Search results

1 – 4 of 4
Article
Publication date: 18 May 2023

Bassam Abdallah, Mahmoud Kakhia, Karam Masloub and Walaa Zetoune

Niobium Nitride (NbN) was interesting material for its applications in the medicinal tools or tools field (corresponding to saline serum media) as well as in mechanical…

44

Abstract

Purpose

Niobium Nitride (NbN) was interesting material for its applications in the medicinal tools or tools field (corresponding to saline serum media) as well as in mechanical properties. The aim of this work was depositing NbN thin films on two types of substrates (stainless steel (SS304) and silicon (100)) using plasma technique at varied powers (100–150 W).

Design/methodology/approach

DC magnetron sputtering technique at different powers were used to synthesis NbN films. Film structure was studied using X-ray diffraction (XRD) pattern. Rutherford elastic backscattering and energy dispersive X-ray were used to examine the deposited film composition. The films morphology was studied via atomic force microscopy and scanning electron microscopy images. Corrosion resistance of the three NbN/SS304 films was studied in 0.9% NaCl environment (physiological standard saline).

Findings

All properties could be controlled by the modification of DC power, where the crystallinity of samples was changed and consequently the corrosion and microhardness were modified, which correlated with the power. NbN film deposited at higher power (150 W) has shown better corrosion resistance (0.9% NaCl), which had smaller grain size (smoother) and was thicker.

Originality/value

The NbN films have a preferred orientation (111) matching to cubic structure phase. Corrosion resistance was enhanced for the NbN films compared to SS304 substrates (noncoating). Therefore, NbN films deposited on SS304 substrate could be applied as medicinal tools as well as in mechanical fields.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 February 2024

Bassem Assfour, Bassam Abdallah, Hour Krajian, Mahmoud Kakhia, Karam Masloub and Walaa Zetoune

The purpose of this study is to investigate the structural, surface roughness and corrosion properties of the zirconium oxide thin films deposited onto SS304 substrates using the…

Abstract

Purpose

The purpose of this study is to investigate the structural, surface roughness and corrosion properties of the zirconium oxide thin films deposited onto SS304 substrates using the direct current (DC) magnetron sputtering technique.

Design/methodology/approach

DC sputtering at different powers – 80, 100 and 120 W – was used to deposit ZrO2 thin films onto different substrates (Si/SS304) without annealing of the substrate. Atomic force microscope (AFM), energy-dispersive X-ray spectroscopy (EDS), Tafel extrapolation and contact angle techniques were applied to investigate the surface roughness, chemical compositions, corrosion behavior and hydrophobicity of these films.

Findings

Results showed that the thickness of the deposited film increased with power increase, while the corrosion current decreased with power increase. AFM images indicated that the surface roughness decreased with an increase in DC power. EDS analysis showed that the thin film has a stoichiometric ZrO2 (Zr:O 1:2) composition with basic uniformity. Water contact angle measurements indicated that the hydrophobicity of the synthesized films decreased with an increase in surface roughness.

Originality/value

DC magnetron sputtering technique is infrequently used to deposition thin films. The obtained thin films showed good hydrophobic and anticorrosion properties. Finally, results are compared with other deposition techniques.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 April 2020

Bassam Abdallah, Mahmoud Kakhia and Walaa Zetoune

This study aims to carry out the deposition of zinc sulfide (ZnS) thick films on glass and silicon (100) substrates using radio frequency (RF) magnetron sputtering method at…

Abstract

Purpose

This study aims to carry out the deposition of zinc sulfide (ZnS) thick films on glass and silicon (100) substrates using radio frequency (RF) magnetron sputtering method at different powers. Film structure has been analyzed by X-ray diffraction (XRD); the patterns showed that the films possesses a cubic structure with (111) preferred orientation. Photoluminance (PL) intensity of the films has been related to the crystallinity, which is varied with the power.

Design/methodology/approach

Scanning electron microscope (SEM) images have been used to discover the films’ morphology. The stoichiometry has been confirmed by energy dispersive X-ray spectroscopy (EDX) analysis. MicroRaman spectroscopy has been used to validate the film structure. Gas-sensing studies were carried out by means of a static gas chamber to sense acetone, ethanol, methanol, H2O and NH3 vapor in air ambient.

Findings

ZnS has a stoichiometric and cubic structure. The band gaps and photoluminance intensity of the films are correlated with the crystallinity, which is varied with the power. The EDX analysis approved the stoichiometry of the prepared films. Acetone, ethanol, humidity (H2O), methanol and NH3 vapor gases were used to justify the sensing properties at 25°C of the thickest ZnS film.

Originality/value

High-quality ZnS films have been obtained at different powers without annealing. Gases sensing properties at 25°C are justified for deposited ZnS films using acetone, ethanol, humidity (H2O), methanol and NH3 vapor gases. It reveals good response for NH3 and humidity vapors at room temperature; the sensing functioning at this temperature was attractive in recent research.

Details

World Journal of Engineering, vol. 17 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 April 2022

Sami A. Ajeel, Mahdi M. Hanoon and Ahmed Mohamed

The low carbon steel used in industrial water conveying pipes in the Dora refinery is corroded. This study aims to reduce corrosion rate in these pipes by using green inhibitor…

Abstract

Purpose

The low carbon steel used in industrial water conveying pipes in the Dora refinery is corroded. This study aims to reduce corrosion rate in these pipes by using green inhibitor extracted from dill plant. This inhibitor is sustainable environmentally.

Design/methodology/approach

The inhibitor extracted from the dill plant was added at different temperatures (25, 40, 60 and 80°C) and at a fixed concentration of 1,400 ppm, as the best protection was obtained at this concentration. The study was carried out under the same conditions using a polarization technique and scanning electron microscope.

Findings

From the results obtained from the polarization curves, it was found that the inhibition efficiency was 92.12% at a concentration of 1,400 ppm and a temperature of 20°C. Potentiodynamic curves showed that both cathodic and anodic reactions were affected by the addition of the inhibitor, indicating that the used inhibitor acted as a mixed type inhibitor, which means that the addition of these inhibitors to the industrial water reduced the anodic dissolution of iron and also retarded the cathodic hydrogen evolution reaction. This reveals that the inhibition mechanism is of the mixed type with a predominant anodic reaction. The results of the fourier transform infrared test indicated that the dill plant contained different chemical bonds (C–H, C = O, S = O, N–O and C–N) that were included in the construction of the barrier layer to protect the steel surface from corrosion.

Originality/value

The dill plant is abundant in nature, its cost is low and its extraction is very easy. It can be used as an environmentally friendly inhibitor to reduce the rate of corrosion in water-carrying pipes used in oil refineries because it contains effective groups (aromatic rings) that combine with metal atoms to form strong bonds that stick to the surface of the metal, which protect it from the attack of the corrosive medium.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 4 of 4